YOLOv3使用笔记——Kmeans聚类计算anchor boxes

        anchor boxes用来预测bounding box,faster rcnn中用128*128,256*256,512*512,分三个尺度变换1:1,1:2,2:1,共计9个anchor来预测框,每个anchor预测2000个框左右,使得检出率提高很多。YOLOv2开始增加了anchor机制,在v3中增加到9个anchor。例如yolov3-voc.cfg中这组anchor,anchors = 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326,由作者通过聚类VOC数据集得到的,20类目标中大到bicycle、bus,小到bird、cat,目标大小差距很大,如果用自己的数据集训练检测目标,其中部分anchor并不合理,本文记录下在自己的数据集上聚类计算anchor,提高bounding box的检出率。

 

原工程:https://github.com/lars76/kmeans-anchor-boxes

Joseph Redmon论文数据avg iou在67.2,该作者验证在k=9时,多次迭代在VOC 2007数据集上得到avg iou在67.13,相差无几。

 

修改的example.py

import glob
import xml.etree.ElementTree as ET
import tqdm
import numpy as np

from kmeans import kmeans, avg_iou

ANNOTATIONS_PATH = "F:\python\VOC2012\Annotations"
CLUSTERS = 9

def load_dataset(path):
	dataset = []
	for xml_file in tqdm.tqdm(glob.glob("{}/*xml".format(path))):
		#print(xml_file)
		tree = ET.parse(xml_file)

		height = int(tree.findtext("./size/height"))
		width = int(tree.findtext("./size/width"))

		for obj in tree.iter("object"):
			xmin = int(obj.findtext("bndbox/xmin")) / width
			ymin = int(float(obj.findtext("bndbox/ymin"))) / height
			xmax = int(obj.findtext("bndbox/xmax")) / width
			ymax = int(obj.findtext("bndbox/ymax")) / height

			dataset.append([xmax - xmin, ymax - ymin])

	return np.array(dataset)


data = load_dataset(ANNOTATIONS_PATH)
out = kmeans(data, k=CLUSTERS)
print("Accuracy: {:.2f}%".format(avg_iou(data, out) * 100))
print("Boxes:\n {}".format(out))

ratios = np.around(out[:, 0] / out[:, 1], decimals=2).tolist()
print("Ratios:\n {}".format(sorted(ratios)))

 

Kmeans因为初始点敏感,所以每次运行得到的anchor值不一样,但是对应的avg iou稳定。用于训练的话就需要统计多组anchor,针对固定的测试集比较了。

可以计算下VOC的这组anchor在自己数据集上的avg iou,对比直接在数据集上聚类得到的anchor以及avg iou。

 

 

运行example可能会出现如下错误:
ValueError: invalid literal for int() with base 10

原因是xml文件数据有小数,字符串的浮点数强制转成int类型出现了这个错误

解决办法:

先转成float类型再转成int类型就OK了

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页